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ABSTRACT 

 

Iterated local search (ILS) is a very powerful optimization method for continuous-valued numerical optimization. 

However, ILS has seldom been used to solve combinatorial integer-valued optimization problems. In this paper, 

the iterated local search (ILS) with random restarts algorithm is applied to solve combinatorial optimization 

problems, e.g., the classical weapon-target allocation (WTA) problem which arises from the military operations 

research. The mathematical model of the WTA problem is explained in detail. Then the idea of ILS with random 

restarts is explained. A comparison of the algorithm with several existing search approaches shows that the ILS 

outperforms its competitors on the tested WTA problem. 
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I. INTRODUCTION 

 

Stochastic resource allocation (SRA) is a typical 

combinatorial optimization problem in complex 

systems. The decision-making about these problems 

depends on probability of stochastic events. For 

example, the classical weapon-target allocation (WTA) 

problem in military operations research is a typical 

example of SRA problems [1]-[3]. WTA has been 

proved to be a NP-Complete problem [4]. In this paper, 

based on a recent research on WTA, we applied the 

iterated local search approach for solving 

combinatorial SRA problems. The novelty of this paper 

is reflected by the incorporation of random restarts into 

ILS in favor of a better trade-off between exploration 

and exploitation abilities of the optimizer as well as the 

general SRA problem solving.  

 

The Weapon Target Assignment (WTA) problem is 

a fundamental problem in the defense-related 

applications. The problem is to set proper assignment 

of weapons to the threats such that overall expected 

damage of opponents is maximized. These weapon 

systems may have non-overlapping engagement zones 

and most importantly different kill probabilities. In 

addition, the performance of weapon system may vary 

according to the position and direction of threat as well 

as its type. The weapon-target assignment problem is 

an integer programming problem and known to be a 

typical NP-Complete problem [4]. There are some 

global optimum solutions to the particular assignment 

problem such as cutting plane techniques and branch 

and bound algorithms. Recently, several branch and 

bound algorithms with various bounding strategies are 

suggested for the WTA problem [5]. However, the 

exact solutions face with exponential computational 

complexities as the problem size is large. Recently, 

Rosenberger et.al. [6] uses auction algorithm to solve 

the WTA problem. Yet, this greedy approach is 

satisfactory only for small scale problems. 
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Genetic algorithms have been considered as good 

alternatives for optimization problems. Recently, a 

genetic solution with eugenic process has been 

proposed for weapon target assignment problems [7]. 

But the search efficiency still could be improved by 

performing reformation considering assignment pair’s 

weight in overall cost instead of only individual cost. In 

this work, the ILS algorithm is applied for the first time 

to overcome those problems. 

 

    The paper is organized as follows. In Section 2, 

various literatures related to the WTA and 

combinatorial optimizations are reviewed.  In Section 

3, the WTA problem is defined and introduced. The 

idea and algorithm of Iterated Local Search are 

described in Section 4. The results of employing the 

proposed algorithm to solve WTA problem are 

presented in Section 5. Finally, Section 6 concludes the 

paper. 

 

II. LITERATURE REVIEW 

 

The study of WTA problem can be traced back to the 

1950s and 1960s when Manne [8] and Day [9] built the 

model of WTA problem. Hosein and Athans [10] 

classified the WTA problem into two classes: the 

single-objective WTA problem and the multiple-

objective WTA problem. Genetic algorithm [11], ACO 

algorithm [12], auction algorithm [13], VLSN 

algorithm [14], Tabu search [15], and other hybrid 

algorithms [16–18] have been used to optimize single-

objective WTA model by many scholars. In contrast to 

single-objective WTA, multiple-objective optimization 

can take different criterions into consideration and is 

more in line with the real combat decision-making.  

     So, it has aroused wide attention from scholars. Liu 

et al. [19] proposed an improved multi-objective 

particle swarm optimization (MOPSO) algorithm to 

solve multiple-objective WTA problem and apply it to 

a simple 

example including 7 platforms and 10 targets. However, 

they did not apply the proposed algorithm to different 

scales WTA problems for contrastive study. Zhang et al. 

[20] designed a WTA mathematic model and proposed 

a decomposition based evolutionary multi-objective 

optimization algorithm. But the algorithm has not been 

tested on large-scale WTA problem and it has a low 

convergence speed. Li et al. [21] adopted NSGA-II 

(domination-based) and MOEA/D (decomposition-

based) to solve the multiple-objective WTA problem 

and carried out tests on three different BOWTA 

problems. They only applied the proposed adaptive 

mechanism to the WTA problems, but they did not 

verify the behaviour of the proposed adaptive 

mechanism on standard problems.  

 

Different from other algorithms, ACO algorithm is a 

class of reactive search optimization (RSO) methods 

adopting the principle of “learning while optimizing” 

[22, 23]. Since it was introduced in 1992, many variant 

ACO algorithms have been presented, including ant 

colony system (ACS) [24] and MAXMIN ant system 

(MMAS) [25]. Meanwhile, ACO algorithms have been 

intensively investigated and successfully applied to deal 

with multi-objective problems such as travelling 

salesmen problem (TSP) [26], scheduling problem [27], 

vehicle routing problem [28], portfolio selection 

problem [29], network optimization problem [30], and 

some others problems [31–33]. In 2004, Doerner et al. 

proposed the P-ACO algorithm [29] which combined 

traditional ant system with ant colony optimization. 

But ILS has the ability to balance local search and 

global search, it will avoid premature convergence 

during the solution construction phase. The 

characteristic is especially suitable for solving portfolio 

selection problem. Therefore, ILS has been chosen with 

random restarts as the approach for solving the static 

WTA problem. However, to the best of my knowledge, 

there has not been any research conducted about ILS 

for the static WTA problem. 
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III. PROBLEM FORMULATION 

 

The WTA problem focuses on how to allocate attack 

units to targets and can be illustrated in Figure 1. This 

section describes the integer programming formulation 

of assignment problem for N threats or targets and M 

weapons. The basic weapon target assignment problem 

considers only one to-one optimal assignment of 

weapons to targets to make the maximum damage or 

minimize the living probability of opponents. In our 

work, we extend the particular weapon target 

assignment problem with the following assumptions: 

The first one is that the number of weapons and threats 

are not necessarily equal to each other. Second, it is not 

mandatory to assign all weapons to threats. This 

assumption makes search space wide but increases the 

diversity of the solution. The third assumption is that a 

weapon system may run out of resource, i.e. missiles or 

bullets. In this case the inoperable weapon can’t be 

assigned to a threat. The last assumption is that 

individual kill probability of a weapon for a given 

threat is somehow known. Kill probability of a weapon, 

also a measure of effectiveness of the weapon, is 

expected to include all aspects of engagement such as 

threat type, threat range, threat sector, weapon state. 

 

Let PKij∈ [0,1] is the known kill probability for each 

threat i = 1, … , N and weapon j = 1, … , M pair. Let Vi 

∈ [0,1] is the estimated lethality value for each threat i 

= 1, … , N. Now, introduce the decision value Pij ∈{0,1} 

which is indicating whether jth weapon is assigned to ith 

target for i = 1, … , N and j = 1, …, M. 

 

Assume that, the cost of an assignment decision, P, 

for a given scenario, PK and V, is the sum of weighted 

cumulative probability of survival of the target set as 

follows: 

𝐶(𝑃) = ∑ 𝑉𝑖

𝑁

𝑖=1

∑(1 − 𝑃𝐾𝑖𝑗)𝑃𝑖𝑗

𝑀

𝑗=1

 

Thus, we may define the combinatorial weapon 

assignment problem (WTA) as the following integer 

programming problem with the nonlinear objective (1):  

 

minimize                                                                  

𝐶(𝑃) = ∑ 𝑉𝑖
𝑁
𝑖=1 ∑ (1 − 𝑃𝐾𝑖𝑗)𝑃𝑖𝑗𝑀

𝑗=1   

such that 

∑ 𝑃𝑖𝑗
𝑁
𝑖=1 < 1  

𝑃𝑖𝑗 ∈ {0,1}  

i= 1, …, N; j=1, …, M  

 

where the first constraint is the fact that weapon can 

be allocated at most one target.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Illustration of the WTA problem 

 

IV. ITERATED LOCAL SEARCH IN 

COMBINATORIAL OPTIMIZATION 

 

This is the present name for a concept which has 

been around, in many guises, since at least the 1980s. 

It’s essentially a more clever version of Hill-Climbing 

with Random Restarts. Each time you do a random 

restart, the hill-climber then winds up in some 

(possibly new) local optimum. Thus, we can think of 

Hill-Climbing with Random Restarts as doing a sort of 

random search through the space of local optima. We 

find a random local optimum, then another, then 

(2) 

(1) 
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another, and so on, and eventually return the best 

optimum we ever discovered.  (ideally, It is a global 

optimum) Iterated Local Search (ILS) tries to search 

through this space of local optima in a more intelligent 

fashion: it tries to stochastically hill-climb in the space 

of local optima. That is, ILS finds a local optimum, then 

looks for a “nearby” local optimum and possibly adopts 

that one instead, then finds a new “nearby” local 

optimum, and so on. The heuristic here is that you can 

often find better local optima near to the one you’re 

presently in, and walking from local optimum to local 

optimum in this way often outperforms just trying new 

locations entirely at random. 

 

ILS pulls this off with two tricks. First, ILS doesn’t 

pick new restart locations entirely at random. Rather, 

it maintains a “home base” local optimum of sorts, and 

selects new restart locations that are somewhat, though 

not excessively, in the vicinity of the “home base” local 

optimum. We want to restart far enough away from our 

current home base to wind up in a new local optimum, 

but not so far as to be picking new restart locations 

essentially at random. We want to be doing a walk 

rather than a random search. 

 

Second, when ILS discovers a new local optimum, it 

decides whether to retain the current “home base” local 

optimum, or to adopt the new local optimum as the 

“home base”. If we always pick the new local optimum, 

we’re doing a random walk (a sort of meta-exploration). 

If we only pick the new local optimum if it’s better than 

our current one, we’re doing hill-climbing (a sort of 

meta-exploitation). ILS often picks something in-

between the two, as discussed later. If you abstract 

these two tricks, ILS is very simple. The only 

complexity lies in determining when a local optimum 

has been discovered. Since this is often difficult, I will 

instead employ the same approach here as was used in 

random restarts: to set a timer. Hill-climb for a while, 

and then when timer goes off, it’s time to restart. This 

obviously doesn’t guarantee that we’ve found the local 

optimum while hill-climbing, but if the timer is long 

enough, we’re likely to be in the vicinity. 

 

The algorithm is very straightforward: do hill-

climbing for a while; then (when time is up) determine 

whether to adopt the newly discovered local optimum 

or to retain the current “home base” one (the 

NewHomeBase function); then from our new home 

base, make a very big Tweak (the Perturb function), 

which is ideally just large enough 

 to likely jump to a new hill. The algorithm looks like 

this: 

ALGORITHM 

Algorithm: Iterated Local Search (ILS) with 

Random Restarts  

1:  T ← distribution of possible time intervals 

2:  S ← some initial random candidate solution 

3:  H ← S  

4:  Best ← S 

5:  repeat 

6:      time ← random time in the near future, 

chosen           

                      from T 

7:      repeat 

8:          R ← Tweak(Copy(S)) 

9:          if Quality(R) > Quality(S) then 

10:            S ← R 

11:    until S is the ideal solution, or time is up, 

or we  

         have run out of total time 

12:    if Quality(S) > Quality(Best) then 

13:        Best ← S 

14:    H ← NewHomeBase(H, S) 

15:    S ← Perturb(H) 

16: until Best is the ideal solution or we have 

run out  

      of total time 

17: return Best 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

Mehedi Hasan  Int J Sci Res Sci Eng Technol. July-August-2019; 6 (4) : 405-412 

 
 

 

 
409 

Much of the thinking behind the choices of Perturb 

and NewHomeBase functions is a black art, determined 

largely by the nature of the particular problem being 

tackled. Here are some hints. The goal of the Perturb 

function is to make a very large Tweak, big enough to 

likely escape the current local optimum, but not so 

large as to be essentially a randomization. Remember 

that we’d 

like to fall onto a nearby hill. The meaning of “big 

enough” varies wildly from problem to problem. The 

goal of the NewHomeBase function is to intelligently 

pick new starting locations. 

 

    Just as global optimization algorithms in general lie 

between the extremes of exploration (random search 

and random walks) and exploitation (hill-climbing), 

the NewHomeBase should lie somewhere between 

these extremes when considering among local optima. 

At one extreme, the algorithm could always adopt the 

new local optimum, that is,  

𝑁𝑒𝑤𝐻𝑜𝑚𝑒𝐵𝑎𝑠𝑒(𝐻, 𝑆) = 𝑆 

This results in essentially a random walk from local 

optimum to local optimum. At the other extreme, the 

algorithm could only use the new local optimum if it’s 

of equal or higher quality than the old one, that is, 

𝑁𝑒𝑤𝐻𝑜𝑚𝑒𝐵𝑎𝑠𝑒(𝐻, 𝑆) = 𝑆  

                                              𝑖𝑓 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆) ≥ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝐻) 

𝑁𝑒𝑤𝐻𝑜𝑚𝑒𝐵𝑎𝑠𝑒(𝐻, 𝑆) = 𝐻; 

                                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Tweak is adding a small amount of random noise to 

each number in the candidate solution vector. Tweak 

is to make a small, bounded, but random change. 

Tweak wouldn’t ever make big changes. If we’re stuck 

in a sufficiently broad local optimum, Tweak may not 

be strong enough to get us out of it. Thus, the 

algorithms so far have been local optimization 

algorithms. There are many ways to construct a global 

optimization algorithm instead. That’s why we are 

changed the local search with random restart to 

overcome the stuck in local optima. 

 

 

V. COMPUTAIONAL EXPERIMENTS 

 

In this section, a numerical example that illustrates 

the merits of solving combinatorial WTA problem with 

ILS algorithm is presented. To validate the validity of 

the algorithm, simulation results are compared 

between the best solutions gained with standard 

Genetic Algorithm (GE) and improved Differential 

Evolution (DE) of the literature [34]. Basic data was 

provided in the literature [34], where there were 14 

weapons and 12 targets. The killing probability of 

weapons was given in table II. The maximal update 

times of simulation with ILS, standard GE and 

improved DE for solving WTA problem was 200, and 

the swarm and initial random candidate solution scale 

were 200 too. The distribution of possible time 

intervals, T of ILS was 1 to 3. Simulation programs run 

50 times to search the best solution. Simulation results 

is given in the table I. Table I shows that the ILS with 

random restarts is superior over standard GE & 

improved DE algorithm in the case of best & average 

value of convergent solution, average convergent time 

and times achieving the best solution when solving the 

WTA problem. 

 

 

VI. CONCLUSION 

 

    In this article, the Iterated Local Search (ILS) 

algorithm is first time applied to solve the 

combinatorial stochastic WTA problem. A 

combinatorial WTA model satisfying expected damage 

probabilities is also formulated in this article. With this 

WTA model, the target with greater threat value can 

be intercepted first, and the armament can be saved. 

Perturb function is used to make a big enough tweak to 

escape the local optimum. The ILS with Random 

Restarts algorithm gives an effective way to solve this 

WTA problem. Finally, an initial simulation is 

demonstrated to solve the combinatorial problem. The 
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result of the simulation is compared with the Genetic 

Algorithm and improved Differential Evolution. The 

comparison shows that ILS is more effective and 

efficient than those algorithms in solving the 

combinatorial WTA problem. 

 

TABLE I. Result Contrast 

 

Algorithm Best MinE Avg. MinE Avg. Convergence Time Times of getting 

best solution 

Standard GE 2.10 2.21 67 7 

Improved DE 2.07 2.12 48 14 

ILS with Random Restarts 2.01 2.06 39 5 

 

TABLE III. Killing Probability 
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